

ADP - Customer Experience with Virtualization on System z

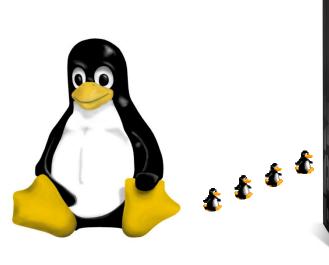
Agenda

- ADP Company Background
- Mainframe Environments
- Virtualization Project
- Benefits
- Challenges
- Open Source / Cloud Concepts
- Still Going and Growing...

ADP – Company Background

- \$11.3 Billion in annual revenue
- 57,000 Employees worldwide
- ADP pays 1 in 6 U.S. workers
- ADP pays 1 in 4 Canadian workers
- Processed nearly 48 million W-2's in 2012
- Well established in the Cloud before the term became fashionable
- Over 300,000 SaaS clients (18 million users) leveraging ADP's solutions for recruiting,
 talent management, time and attendance, HR, benefits, retirement services, and payroll
- Provide one or more services to 80% of the Fortune 500 and 90% of the Fortune 100 companies
- ADP serves over 620,000 clients across 125 countries
- Dealer Services groups provides fully integrated technology services and solutions to about 26,000 dealerships worldwide

Mainframe Environments


- Four data centers in North America
- 23 CEC's
 - Mix of z/EC-12's, z/196's and z/114
- 42 z/OS LPAR's
 - Consolidated into three data centers
 - Payroll processing, retirement services, tax services & more
 - 52,000+ Programs almost 60 million lines of code (mostly COBOL)
 - 3 million batch jobs processed each month
 - Over 400 CICS regions supporting around 20 million transactions/day
- Over 1,500 TB of CKD DASD for z/OS and z/VM

Mainframe Environments - z/VM / LINUX Details

- When we started... (for the third time!)
 - Early 2008 POC
 - 2 IFL's and 32 GB of Memory across two z/9's
 - 2 z/VM LPAR's

12 Guests – Engineering, CSL & WAS

- Third time was a charm!
 - We first started "playing" with Linux on z in 1999/2000
 - No IFL's, SLES 7 Performed poorly, nobody really interested
 - Second try came in 2004 with a loaner IFL
 - Similar results Tried bringing up WAS to get some application interest, but no takers and no management buy-in
 - In 2006-2007 we had a significant management change
 - New CIO and SVP had mainframe backgrounds and understood value and RAS concepts that System z had to offer the hosted world
 - Early 2008 POC 2 IFL's and 32 GB of Memory across two z/9's
 - Started POC with some IT-internal servers (CSL & WAS)
 - Spent a lot of time with IBM, Novell and friends looking for best practices
 - Learned a lot about what we should and shouldn't do!
 - By April of 2009, we were ready for the masses to join us

Project Overview & Scope

Overview

 Introduce and implement z/Linux as an effective TCO alternative for ADP products current and future

Approach

- Build system infrastructure for z/Linux
- Complete and review proof of concepts with CSL and WAS
- Establish cross disciplinary teams to evaluate opportunities. Unix, Linux, z/VM, middleware, network, business, testing, finance, ptam, technical support and application teams to be represented
- Include within technology governance, ARB and portfolio management processes to ensure and support adoption where appropriate
- Create Total Cost of Ownership model for z/Linux
- Create z/Linux product roadmap

Assumptions

- Plugs into current Hosting Support Model
- Minimize re-engineering while leveraging System/Z capabilities
- o Not an all or nothing approach
 - Focus on tiers, products and platforms that leverage System/Z and provide best financial benefit to ADP
- Optimize floor space, power and cooling
- Simplify our DR models

Official Project Kick-off (April 2009)

- By now, we had 6 IFL's with 38 guests on two z/10's and had a good story to tell
- Open communications with all groups and management
- Explained what a mainframe is and what we can (and can't) offer
- Minimize transition impacts as much as possible
 - Leverage existing standards and procedures

Working Groups Responsibilities Operations Architecture/ Financial/ Networking Tech Support Infrastructure Procurement Current & Future Cost Models Current Operating Model Current State Analysis Current Network Analysis (Mainframe & Dist) CPU, Memory, (Mainframe, Dist & Services Analysis Financial Tracking DASD Networks) Determine z\Linux Operational Support Business Case Requirements (Monitoring / Alerts) Storage Administration Router Guests – Production Development Workload Requirements (Mainframe & Dist.) Application Specific Req. Procurement action plan Review Active-Active Model Load Balancing & Bandwidth Determine Operating Model Contract Development (DC1-DC2) Requirements Virtualization Opportunities Charge back End State Designs Application Specific Applications Deployment Requirements High Availability & D/R Release Management Security Required Tasks H/W Installation & Cabling RATE, CATE, Testing, Staging High Availability & D/R Application Specific Technical Services Requirements by Tier Tracing/Problem Determination Middleware DIT, FIT, Perf. Benchmarking Problem Determination Proc. Migrations Security Core Middleware Builds for z/Linux Pilots / >JASS POC Build TCO Model and ➤MQ & Message Broker Procedures Vulnerability Testing >DB2 & QMF Assess Migration Risks Requirements >Oracle RAC Create Migration Strategy and Security Tools, Utilities and CSL – Communications Server High Availability & D/R Plans Recommendations for Linux Shared Services Model Prime Candidate List Firewall Definitions. WAS – Initial build, Shared Test Plans Filesystems, B/L application Requirements Data Migration deployment Post-Move Activities

Did I mention communications...

- We tried to make sure all parties were <u>actively</u> involved in the project
- Management really helped make sure everyone participated
- Mapped out high level project plans, requirements, deliverables
- Each work group came back and presented their plans & support models

z/Linux Project - Parallel Activities **Virtualization Project** Vulnerability Secure Operations z/VM 5.4 D/R MQ SAN TEPS NAS TCO's HWSE EV5 Testing Builds Model Hosted SLES Cost Models Equipment AV Issues Capacity QMF WAS/JASS Backups Domain Patching RATE/CATE Charge Back Management Procurement Support DC1/DC2 Service Desk \ Monitoring Staging & 10 Gb Network Cloning Software LDAP Log Mgmt Chg Control & Build Sheets Alerts & Mgmt Network Hardware & Infrastructure Deployment Scripts Evaluations Be careful what you DC1-DC2 ESM & EMC Tech Performance ask for... You just might get it! Oracle Production CSL Refresh Testing Architecture / Infrastructure Security Migrations z/LINUX Network **PROJECT** Finance Middleware Pilots/ POC's Operations/

- This is when the fun really started and the flood gates opened
 - Found a lot of (i)'s to dot and (t)'s to cross as more groups joined in
 - Had to level-set with a lot of groups on what sharing resources really means to them and how some things <u>have to</u> change

Virtualization Project – Success Factors

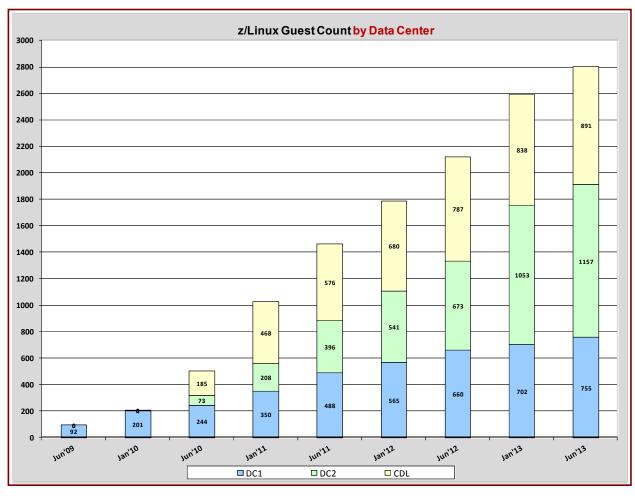
- TCO / TCA "real" cost analysis (H/W, S/W, People, Environmentals, D/R)
 - Need to use the <u>real</u> costs all the way through the process
 - IBM Aggressive pricing for IFL's and Memory (<u>this is a must!)</u>
- Management, Finance & Procurement Knew what the "Hosted" spend was and how it was increasing each quarter
 - Recognized savings opportunities before we did
 - Negotiated fantastic deals with our vendors
 - Single organization responsible for all H/W and S/W orders
 - From thousands of cores down to hundreds Think about the PVU costs!

Virtualization Project – Success Factors

- Leveraged existing mainframe staff Built up over time
 - Approached this as we would any other "mainframe" project
 - Utilize the resources fully, automate, monitor, support dynamic/redundant configurations, etc.
- Folded into existing standards and procedures whenever possible and provided enhancements when necessary
 - Secure builds, patching, monitoring/alerting
 - Single C/I/P management process Tweaked workflows and groups

Virtualization Project – Success Factors

- Provided new features and solutions
 - Shared mini-disks for WAS Binaries Install once and forget about it
 - Provisioning/Cloning, Automation, Scheduling LPAR & Guest levels
 - Capacity on Demand
 - Enhanced D/R capabilities with LPAR/Guest replication and CBU
 - User ability to start/stop/recycle their own guests while having a view into the Guest, LPAR, CEC and Data Center resource utilization data
 - ➤ Velocity-zVPS & CSL-Wave
 - Shared RACF / DIRMAINT
- Technology Refreshes
 - In a single weekend, upgraded 800 guests from a z/10 to a z/196 providing a 20-25% performance improvement
 - Just did it again going to zEC-12's in a scheduled maintenance window!


Mainframe Environments – z/VM / LINUX Details (Today)

Where we are today...

- Over 400 IFL's
- > 400,000 MIPS installed and growing...
- 30 z/VM LPAR's and growing...
- More than 30 TB of Memory across 14 CEC's (Active and Pre-planned)
- 2,900 Guests and growing each week
 - > WAS, CSL, Oracle, Portal, Cognos, DB2 Connect, QMF, TEPS
- More than 7,200 JVM's
- Over 1,700 Oracle Databases
- 900+ TB of SAN attached disk
- Another 800+ TB of CKD disk
- Over 6,200 virtual CPU's and 17 TB of virtual RAM

This is true virtualization and not just consolidation

- □ Average Virtual to Real Memory over-commit is 1.8:1 (Max – 3.5:1)
- □ Average Virtual to Real CPU over-commit is 14:1 (Max – 37:1)
- Mixed applications sharing same resources
 – WAS, Oracle, CSL, Cognos, Portal, etc.
- Prod and Non-Prod LPAR's sharing resources

Benefits

- Software savings Savings (\$\$ millions)
 - Core and PVU based software license fees
- Environmentals Savings (\$\$ millions) and Cost avoidance (\$\$ more millions)
 - Power, Cooling, Cabling, Switches
 - Data Center expansion
- D/R capabilities
 - Followed z/OS design (Automated scripts to recognize D/R site and make changes at IPL/Boot time)
 - CBU and Pre-planned memory Pay for what you use No wasted resources
- Standards
 - Shared WAS binaries not only sped up guest turn over, but guarantees it's the same WAS across guests
 - Golden image used for all guests based on a single "secured" build WAS, DB, Other...
 - Clustered WAS configurations Applications split across LPAR's and CEC's

Benefits

- Capacity on Demand
 - We plan for peaks, but we still have times throughout the year, we need more
- Performance / Response times A lot of good stories here Helps get the word out that Z is "okay"
 - Authentication Application
 - Combination of WAS 6.1 to 7 and Solaris to Z migration
 - 50-500% response time and throughput improvement
 - JAVA-based Payroll Application
 - Benchmark testing without any tweaking of system or application
 - 2x throughput improvement on standard test
- R.A.S.S.S.S.S.
 - Reliability, Availability, Security, Scalability, Supportability, Serviceability &
 Standardization
 - It's not uncommon for our LPAR's supporting hundreds of guests to be up for 6-8 months without an IPL This does require a fair amount of pre-planning when you're growing like we have.

Challenges

We were not prepared for the rate of growth when we started Ran way too tight in the beginning and caused some bad impressions of Z

Releasing memory for near-idle guests

CMDB

Training | Education Training | Education Across organization Sharing | Scheduling Sharing |

Bigger isn't always better!

- > 256 GB per z/VM LPAR
- > 3 TB per z/196 or zEC-12
- > 4 LPAR's in SSI Cluster
- > 32 Engines per LPAR

WWPN / LUN Management

Page Reordering (going away with 6.3)

Vendor testing & support capabilities

CLAM Anti-Virus (McAfee not supported)

Heap sizes / 31 vs. 64 bit

Debugging real and virtual issues

SLA requirements

CRON schedules

Guest/JVM recycles

Steal time / CPU Starvation

Native Linux tools in virtual world

Native Linux tools in virtual world

TIME! - To work on our engineering "wish list"

Open Source / Cloud

- z/VM has supported "open source" long before it became cool!
 - IPGATE
 - HTTPD
 - PIPEDDR
 - SWAPGEN
 - DRM
 - VIR2REAL
 - MTREXX
 - TRACK
 - XCOMPARE

- NIST Cloud Computing Essential Characteristics...
 - Broad network access
 - ✓ Available today based on application network requirements
 - Resource pooling
- ✓ This is one of System z and z/VM's specialties!
- Rapid elasticity
- ✓ Yup, we can do this too! Need to establish parameters
- Measured service
- ✓ Monitoring, measuring, reporting are BAU for System z environments
- On-Demand self-service ✓ Tools available (<u>if you choose to put this in users hands</u>)
 - Need to really think about what you want your users to do...

Still Going, Still Growing

- Migration projects and new development continues
 - Expect to have around 3,000 Oracle databases running by the end the project (March 2014)
 - Expect to have more than 8,500 JVM's active by June 2014
 - Workloads we're planning for has us running around 4,000 guests by June 2014
 - Just completed the last of the z/196's to zEC-12's upgrades 25-30% Performance improvement
 - Installing four more zEC-12's
- Potential new workloads that could drive these numbers even higher
 - Potential over the next two years to virtualize 300+ physical Portal servers
 - Cognos growth Potential to increase IFL/Memory substantially
- Expect to have z/Next Hardware and Software that can support our requirements!

