

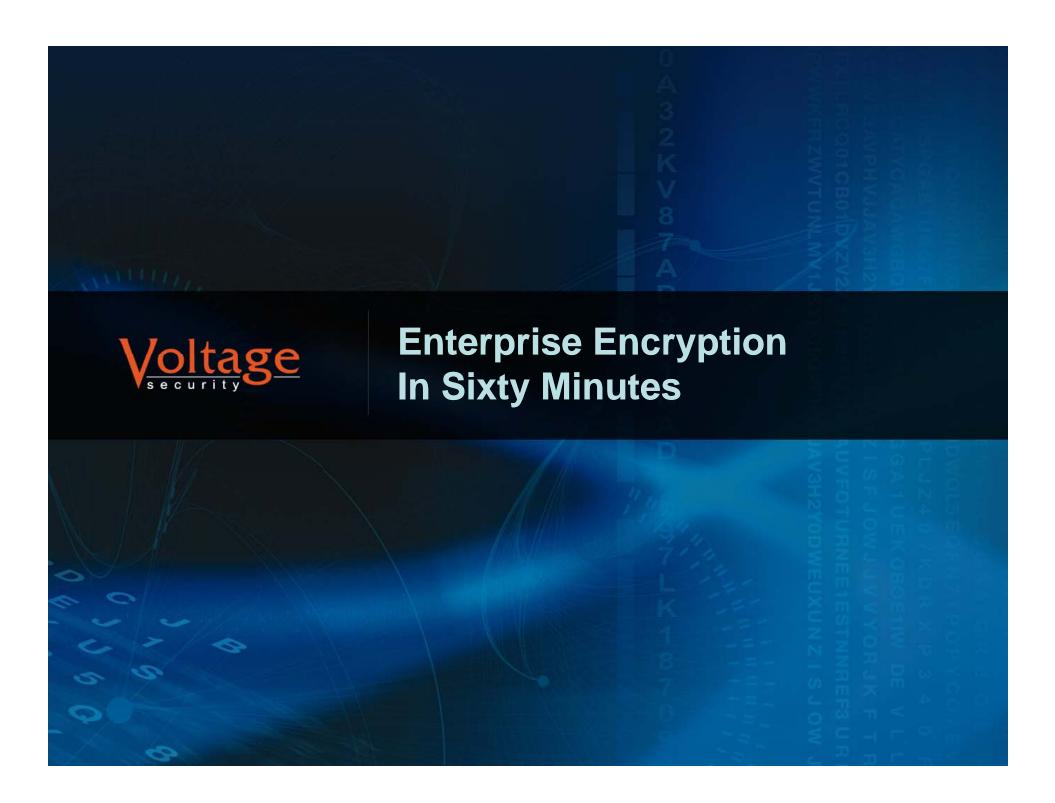
Agenda

- Why we're here
- Why encryption is difficult and scary
- The five Ws of encryption

- Encryption key management: the "other" gotcha
- A realistic approach to enterprise encryption
- Example: Voltage SecureData

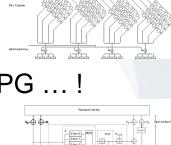
Why We're Here

- CxOs, CISOs are saying "Gotta encrypt stuff now!"
- Breaches are in the news



Heartland, TJX, RBS WorldPay, et al.

- Many sites have implemented several point solutions
 - Different platforms, different problems...not interoperable!
- DLP (data leakage prevention) is not foolproof
 - If it's leaked but encrypted, you care a whole lot less!
- The h4xx0rs are out there...
 - ...and they're getting smarter and more creative
- Internal breaches are increasing
 - Gartner et al. agree: 70%++ breaches are internal



Encryption Is Difficult

- Lots of different technologies
 - Hardware-based, software-based, hardware-assisted
 - DES, TDES, AES, Blowfish, Twofish, CAST, PGP, GPG ...!

- Much of it probably of unknown value/use
- The sheer volume is daunting
- Difficult to imagine how to get started
 - Easier to stick your head in the sand and hope it goes away
- For mainframe folks, it's even easier to (try to) ignore
 - System z OSes are traditionally more secure than distributed

Encryption Is Scary

- Most of us don't understand the technologies
 - Math classes were a looong time ago
- It changes constantly
 - We hear "DES has been broken, use AES"

1+1=2

- What does that mean? Is DES useless? Is AES next to fall?
- Lots of snake-oil salesmen in encryption
 - www.singularics.com touts "unbreakable encryption"

- Easy to decide encryption is unapproachably complex
 - Like buying your first house, or doing your own taxes...

The Five Ws of Encryption

- Why encrypt data?
- What should be encrypted?
- Where should it be encrypted?
- When should it be encrypted?
- Who should be able to encrypt/decrypt?
- How will you encrypt it?

- Every company has data to protect
 - NPPI, PII, or just PI
 - Customer information
 - Internal account information
 - Intellectual property
 - Financial data
- Every company moves data around
 - Backup tapes
 - Networks
 - Laptops
 - Flash drives
 - Data for test systems

- Different media have different issues
 - Very few backup tapes get lost...but it does happen
 - Networks get compromised fairly regularly
 - Laptops are lost or stolen every day
 - Flash drives are disposable nowadays
- Different media types mean different levels of risk
 - Deliberate, targeted network breaches are obvious concern
 - Missing backups probably won't be read
 - Missing laptops probably won't be analyzed for PII
 - Found flash drives are probably given to the kids

- Breaches happen!
 - 2007: 446; 2008: 656 (Identity Theft Resource Center)
 - A healthy increase...and what about undetected/small ones?
 - Can you afford to bet your job/business?
- Data encryption is not a luxury
 - Claimed cost per compromised card around \$200!!!
 - Heartland breach: 100M cards; TJX: 94M cards
 - Do the math...

Data breach sources:

73%: external

18%: insiders

39%: business partners

30%: multiple parties

Source: Verizon Business, 2009 Data Breach Investigations Report

- External attack costs averages \$57,000
- Insider attacks average \$2,700,000!

Commonalities:

- 66%: victim unaware data was on system
- 75%: not discovered by victim
- 83%: not "highly difficult"
- 85%: opportunistic
- 87%: avoidable through "reasonable" controls

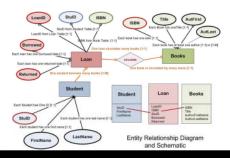
Causes:

- 62%: attributed to a "significant error"
- 59%: from hacking or intrusions
- 31%: used malicious code
- 22%: exploited vulnerability
- 15%: physical attacks

- The law is catching up with the reality
 - PCI DSS (Payment Card Industry Data Security Standard)
 - Red Flag Identity Theft Rules (FACTA)
 - GLBA (Gramm-Leach-Bliley Act)
 - SB1386 (California)
 - Directive 95/46/EC (EU)
 - HIPAA
 - etc.
- PCI DSS not only requires data encryption, but also:
 - Restrict cardholder data access by business need-to-know
 - This is called separation of duties

What To Encrypt?

- Everything! (Well, maybe not...)
 - Performance, usability, cost are barriers
 - Partners likely use different encryption technology
 - Changing every application that uses the data is prohibitive
- No single answer
 - Laptops, flash drives: at least PII, probably all data
 - Backup tapes: all data
 - Whole-database encryption possible but not a good answer



What To Encrypt?

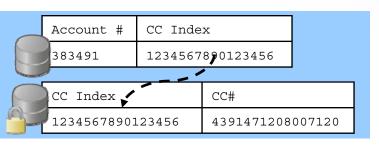
- Whole database encryption fails on several counts
 - Can impose unacceptable performance penalty
 - Prevents data compression, using more disk space etc.
 - Violates separation of duties requirements
 - Better to just encrypt the PII (whatever that is)!
- What about referential integrity and other data relationships?

- Database 1 & database 2 both use SSN as key
- If you encrypt them, encrypted SSNs better match!
- Else must decrypt every access, and indexes useless

Application & Database Encryption Today: Four Approaches

- Whole Database Encryption
 - Encrypt all data in DB—slows all applications
 - No granular access control, no separation of duties
 - No security of data within applications

CC#


4391471208007120

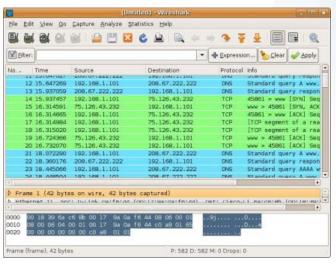
- Column Encryption Solutions
 - Encrypt data via DB API or stored procedure
 - Hundreds of tables and views, restricts change
 - No data masking support and poor separation of duties
- Traditional Application-level Encryption
 - Encrypt data itself via complex API
 - Requires DB schema/application format changes
 - High implementation cost plus key management complexity

Encrypted C

- Lookaside Database (aka "Tokenization")
 - CC# indexed, actual CC# in protected DB
 - Requires online lookup for every access
 - Requires major application redesign

Where To Encrypt?

- Different question than "what":
 - Data at rest and in motion
- Data at rest
 - "Brown, round, and spinning" (DASD of all types)
 - On tape (backup or otherwise)
- Data in motion
 - Traversing the network



Where To Encrypt?

- Data in motion particularly troublesome
 - How do you know if it's been sniffed as it went by?
- Data at rest somewhat easier
 - Intrusion detection systems fairly effective (if installed and configured, and if someone actually checks the logs)
 - ESMs very effective on z/OS (if administered correctly)
- Different issues, thus different criteria!

When To Encrypt?

- Ideally, data is encrypted as it's captured
 - By the data entry application, or the card swipe machine
- In reality, it's often done far downstream
 - The handheld the flight attendant just used—is it encrypting?
 - Did last night's restaurant encrypt your credit card number?
 - If the data goes over a wireless network, is it WEP? WPA?
- "Doing it right" is harder: more touchpoints
 - Easier (if less effective) to say "Just encrypt at the database"
 - Avoids interoperability issues (ASCII/EBCDIC, partners)

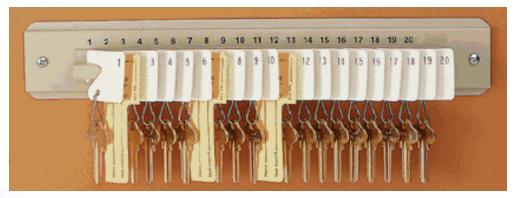
Who Can Encrypt/Decrypt?

- Usual question is: who decrypts?
 - Who should have the ability to decrypt PII?
- Should your staff have full access to all data?
 - Many unreported (or undetected) internal breaches occur
- What if someone leaves the company?
 - How do you ensure their access is ended?
- What if an encryption key is compromised?
 - Can you revoke it, so it's no longer useful?
- PCI DSS et al. require these kinds of controls
 - This is a big deal—not trivial to implement

hacker

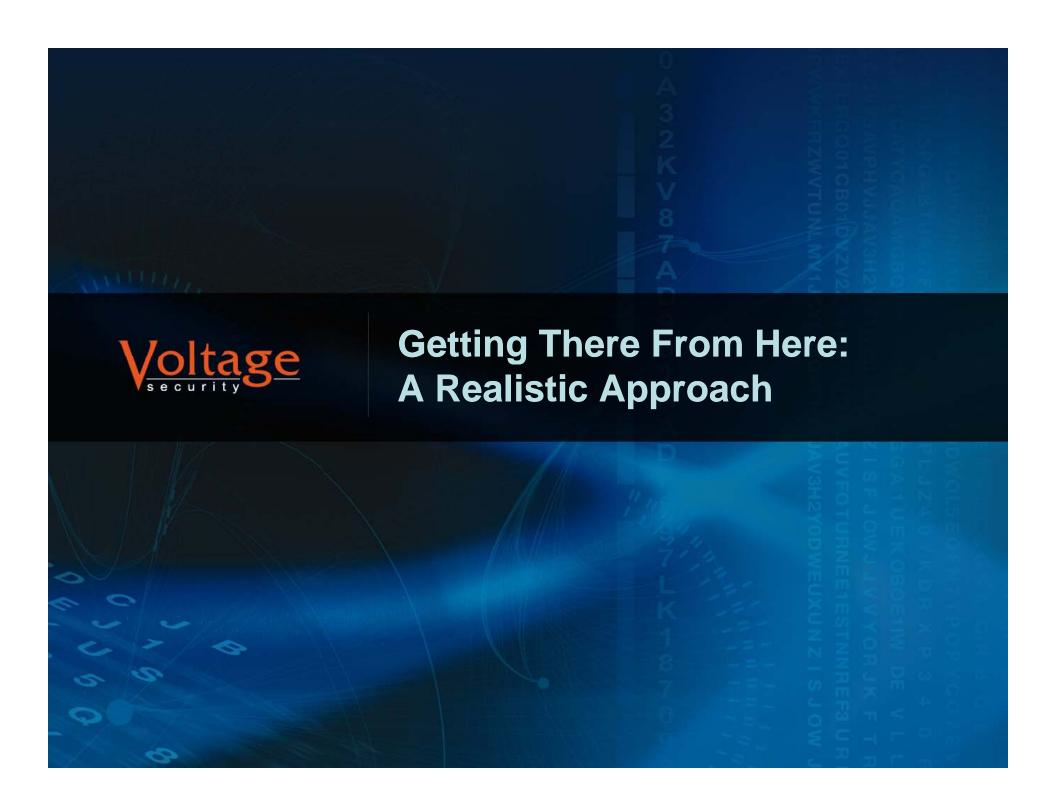
How Will You Encrypt Data?

- Hardware? Software?
 - Many options exist for both
- Is a given solution cross-platform?
 - If not, you must decrypt/re-encrypt when data moves
- AES? TDES? Symmetric? PKI?
 - Many, many choices exist—too many!


How Will You Encrypt Data?

- Different issue: How do you get from here to there?
 - 100M++ data records—how to encrypt without outage?
 - "Customer database down next week while we encrypt"?!
- What about data format changes?
 - Encrypted data usually larger than original
 - Does not compress well (typically "not at all")
 - Database schema, application fields expect current format
 - Can you change everything that touches the data?
 - (Should you need to?)

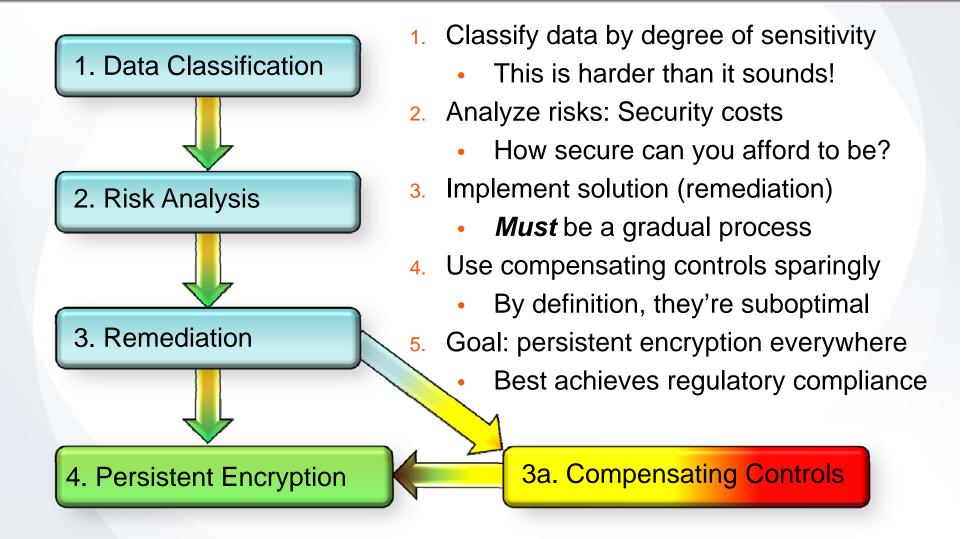
Key Management


- "Encryption is easy, key management is hard"
 - Ultimately, encryption is just some function applied to data
 - To recover the original data, you need key management
- Three main key management functions:
 - 1. Give encryption keys to applications that must protect data
 - 2. Give decryption keys to users/applications that correctly authenticate according to some policy
 - 3. Allow administrators to specify that policy: who can get what keys, and how they authenticate

Key Management

- Key servers generate keys for each new request
 - Key server must back those up—an ongoing nightmare
 - What about keys generated between backups?
 - Maybe punch a card every time a key is generated...
- What about distributed applications?
 - How do you distribute keys among isolated networks?
- What about partners?
 - If you distribute encrypted data, how do they get the keys?
- "Allow open key server access" not a good answer
 - Suggest it, watch network security folks' heads explode

A Realistic Approach: Take A Deep Breath


- Investigate encryption, now or soon
 - Better now than after breach
 - That light at the end of the tunnel is a train!

- Data tends to live on for a very long time
- Expect to use multiple solutions
 - Backups, laptops, databases all have different requirements
 - "Right" answer differs
 - E.g., for backups, hardware-based solution; for customer database, column-based encryption

A Realistic Approach: High-Level Roadmap

A Realistic Approach: Key Steps

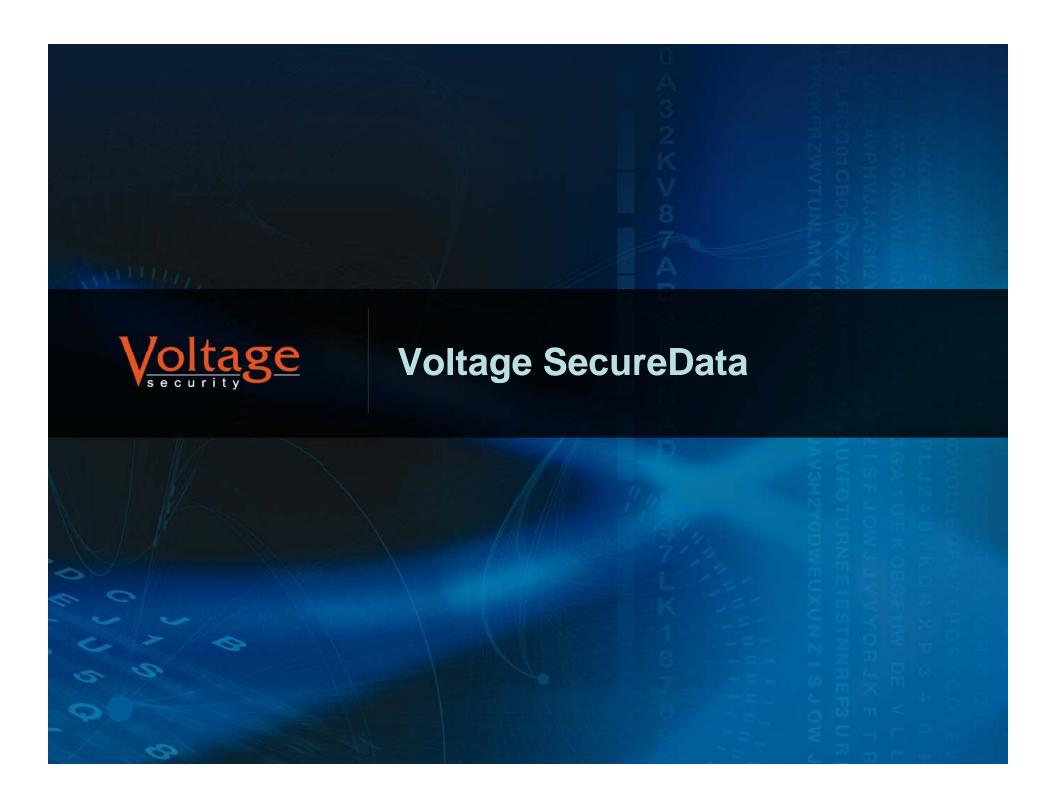
- Key: Involve stakeholders across the enterprise
 - "No database is an island": multiple groups use the data
 - Partners, widespread applications need access too...
- **Key:** Find a "starter" application
 - Generating test data from production is a good beachhead
 - If you "get it wrong", you haven't lost anything "real"
- Key: Designate data by sensitivity:

Red: Regulated (legally required to be protected)

Yellow: Intellectual property or other internal (unregulated)

Green: Public

Each requires a different level of isolation/encryption


A Realistic Approach: Proof of Concept

- Encrypt a representative database
 - "Database" could be DB2, IMS, VSAM, flat file...
- Update application(s) that access it
 - You know what all your applications do, right?
- Validate performance, usability, integrity
 - Encryption *not* free: may see significant performance hit
- Demonstrate to other groups
 - Invite discussion, counter-suggestions
- Once (if!) project approved, request executive mandate
 - Otherwise, some groups may simply not participate

A Realistic Approach: Finishing the Job

- Doing all databases/applications takes time
 - Expect glitches
 - Perhaps most difficult: understanding data relationships
 - Table A and Table B seem unrelated, but aren't
- Lather, rinse, repeat...
 - Each database will have its own issues/surprises

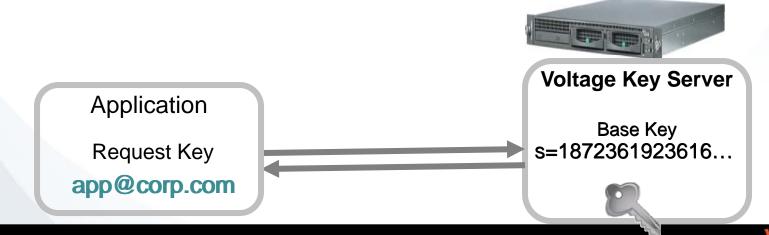
Voltage SecureData

- Voltage SecureData: Yet Another Encryption Product
 - With some key differences, of course!
- Available on z/OS, Windows, Linux, z/Linux, HP/UX, AIX
 - Built on platform-agnostic codebase (easy to port)
 - Can add platforms quickly as customers require them
- Complete suite of options:
 - Toolkit (APIs) for application integration
 - Bulk data encryption tools for scripting/data masking
 - SOA server for legacy/lightweight platforms

Voltage SecureData

Provides Format-Preserving Encryption (FPE)

- Data encrypted with FPE has same format as input
- Encrypted SSN still 9 digits; name has same number of characters; credit card number has same number of digits...
- Avoids database schema changes, most application changes
- Most applications can operate on the encrypted data:
 Less than 10% of applications need actual data
- FPE is proposed mode of AES
 - Look for "Finite Feistel Set Encryption Mode" (FFSEM) on http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
 - Peer-reviewed, well-established—not snake oil!


Voltage SecureData: Cross-Platform

- ASCII/EBCDIC handled automatically
 - Data converted to UTF-8 before encryption/decryption
 - Stored in native format on host (ASCII or EBCDIC)
 - Possible because character sets are deterministic (FPE!)
 - Result: z/OS is a full partner in protected data management
- Encrypt/decrypt where the data is created/used
 - Avoids plaintext data ever traversing the network

Voltage SecureData Key Management

- Simplified key management eases most headaches
 - Keys are generated dynamically based on identity
 - Enables multiple key servers, serving same keys
 - Allows geographic/network isolation
 - Requires backup only when key server configuration changes
- Key request authentication allows separation of duties
 - Users/applications without access cannot get keys
 - Voltage SecureData makes full compliance much easier

Data Masking

- Application testing needs realistic datasets
 - Fake sample datasets typically too small, not varied enough
- Best bet: Use production data...but:
 - Test systems may not be as secure
 - Testing staff should not have full access to PII!

Data Obfuscation Today: Four Approaches

Random Data

- Replace data with random values
- Destroys referential integrity
- Can result in collisions

Shuffling

- Shuffle existing data rows so data doesn't match
- Breaks referential integrity
- Can still leak data, since values are "real"

Fake data tables & rules

- Consistently map original data to fake data
- Provides referential integrity, reversibility
- Massive implementation costs & security risks

Weak, breakable encryption

- E.g., stream ciphers, alphabetic substitution
- Not secure easily reversible by attacker
- Key management challenges

- IBM Optim
- Applimation
- Informatica
- CompuwareFile Aid
- Camouflage
- All fit into these "legacy" approaches
- Need another database to manage rules/mappings – more risk, effort, etc.!
- Must run process to create test data

Voltage SecureData for Data Masking

- Answer: Use encryption to mask (anonymize) test data
 - With FPE, encrypted production data is perfectly usable for test
 - No extra steps required!
- Or can create test data on demand (subset, etc.)
 - Further protects test environment from possible internal breach
 - If random key used, data cannot be decrypted
 - Alternatively, use actual key, decrypt only to verify results/diagnose issues
 - Can even re-encrypt production encrypted data

Voltage SecureData

- "Rolling" keys is required by PCI DSS, other standards
 - Means re-encrypting with new key, invalidating old key
 - Required periodically, if trusted staff leaves, if breached, etc.
- With most encryption solutions, this is a nightmare
 - With SecureData, can re-encrypt on-the-fly
 - Or encode key version in encrypted data
 - In any case, separation of duties through identity-based key provisioning makes it easy to revoke user's access

Reduced Audit and Risk Scope

- Persistent encryption prevents accidental leakage
 - Compensating controls only cover holes you know about
 - Integrate with existing monitoring and scanning tools
- True separation of duties
 - DBAs can still do their jobs, no access to "Red" data without authorization
- Role-based access model allows granular data policies
 - CSR only sees last 4 of credit card; fraud investigator sees all 16
 - Full re-use of identity/access management systems

Using Voltage SecureData

- SecureData Toolkit
 - APIs callable from LE languages
 - Simple: one call to initialize, one call for each encryption/decryption, one call to terminate
- z/FPE and the SecureData CL
 - Scriptable tools for z/OS (z/FPE) or distributed (CL)
 - Both built as Toolkit applications
- z/FPE
 - Runs against flat files, or as user exit
 - Uses customer-written code (Rexx or LE) to control operation

Voltage SecureData Advantages

- Meets all data protection requirements
 - 1. Persistent protection of any data type/field agnostic of database
 - Full segregation of duties between data, administrators, applications, and permitted users, with full audit trail
 - One solution for both persistent data protection and data masking/de-identification
 - 4. Full dynamic central key management no key storage/backup
 - 5. Supports existing identity management /authorization systems

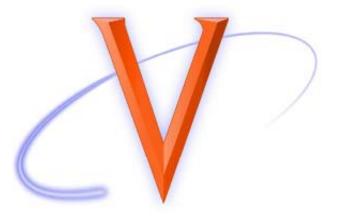
Enterprise PII Privacy with Voltage SecureData

Use Case	Business Driver	Data-centric Business Benefit & Cost Savings
Data protection	Enterprise privacy compliance, Fast, low-cost PCI Compliance	Reduce audit scope, Automate repetitive compliance processes
Data masking for test/QA	Reduce costs with compliant outsourcing and off-shoring	Simple, immediate data de-identification
Securing mobile app data	Capture payments or customer data at point of sale	Embrace new platforms – mobility adoption e.g. iPhone
Securing partner data	Legal and contractual obligations	Extend the enterprise without losing control

Data-centric Approach Benefits Summary

Unified **Avoid Short time to Minimize Business Enterprise Disruptive** Compliance **Impact Encryption** Change Service Privacy as a **Agnostic to Simplify Roll-out** Based **Business Platforms** Approach Advantage Re-use **Enforce Decrease Lower Risk** existing Compliance Policy to infrastructure **Data Level** Scope

Conclusion


- Encryption is not a luxury, not optional today
- A complex topic, but one that can be tamed
- Many solutions exist
- Different data/media require different solutions
- Voltage SecureData solves many of the problems for data at rest and data in motion
 - Not a solution for whole-disk, whole-tape encryption
 - The best solution for existing data, existing applications

Encryption Resources

- InfoSecNews.org: email/RSS feed of security issues http://www.infosecnews.org/mailman/listinfo/isn
- Voltage security, cryptography, and usability blog http://superconductor.voltage.com
- Bruce Schneier's CRYPTO-GRAM monthly newsletter http://www.schneier.com/crypto-gram.html
- RISKS Digest: moderated forum on technology risks http://catless.ncl.ac.uk/risks
- US Computer Emergency Response Team advistories http://www.us-cert.gov/cas/signup.html
- Tracking breaches: http://datalossdb.org/ and http://www.privacyrights.org/ar/ChronDataBreaches.htm

Questions?

Phil Smith III 703.476.4511 (direct) phil@voltage.com www.voltage.com